transits of reasonable quality with ~20 control stars.

Appendix
Presented here for clarity is a mathematical summary of the flat field normalization and dark frame subtraction process applied to each aperture photometry source.

Given
\(\{s_i\} \) is the set of intensities of the source pixels
\(\{\sigma_i\} \) is the set of intensities of the sky (background) pixels
\(\{d_i\} \) is the set of intensities of the dark frame
\(\{f_i\} \) is a set of intensities of the flat field (of which there are several),

The set of the intensities of the normalized average of the flat fields \(\{F_i\} \) is given by:

\[
\{F_i\} = \frac{\{f_i\}}{\text{median}(\{f_i\})}
\]

The instrumental magnitude of the star is then:

\[
I = \sum_{all \ s} \left\{ \frac{s_i - \text{median}\{\sigma_i\} - d_i}{\{F_i\}} \right\}
\]

And the differential astronomical magnitude is given by:

\[
m = 2.5 \times \log_{10} I
\]

Acknowledgements
The author would like to thank Elizabeth Warner (UMCP), the Observatory Coordinator, for providing access to the facilities at the University of Maryland Observatory and training with the telescope. Some of the observatory setup procedures were completed with assistance from fellow undergraduate Harley Katz (UMCP) on several occasions. This project was inspired by a conversation with Dr. David Charbonneau (Harvard) and is being continued with Dr. Drake Deming (UMCP).

References