next trial, which will have hundreds of patients, the device will go to the Food and Drug Administration for approval.

Perhaps the most controversial of the devices Lawson has worked on is a self-injurious behavior device: it prevents patients from deliberately hitting their head by re-training them with electric shocks. Hitting one’s head against a wall or other objects can be a symptom of behavioral diseases such as autism; it can be very dangerous, leading to concussions, skull fractures, loss of consciousness, or intracranial hemorrhage. But social acceptance of the device has proven to be difficult, because it is based on aversive, on now people didn’t even dream about when I was in high school. I’ve just gone to where my interests and position have allowed me to go, and right now I’m very happy.” or punishment-based, therapy. The device, intended to be worn on the head, has a built-in accelerometer that detects when the patient is hitting his head and produces a very small current through his body. After wearing the device for some time, the patient will stop hitting his head, because of the unusual pain of the shock. Many view this method as an ethical challenge, especially in cases where patients are minors and their parents make the decision to give them the device. Lawson, however, believes it is appropriate in many cases, because it reduces the risk of long-term harm in patients for whom nothing else has worked. “Scientifically, it is known to be completely safe... You can have pain [that] is not going to cause any damage, or you can have pain [that] is going to cause a great deal of damage,” he says.

So far, the public has not agreed with him. The current plan for the project is to get input from the community and incorporate more safeguards into the device so that it is acceptable. Lawson truly believes that the device can make a difference in people’s lives, and so he is willing to do “whatever it takes... to get it out there and to see if we can’t do some good with it.”

In fact, Professor Lawson is so invested in his medical projects that, when working on a less painful way to test for carpal tunnel syndrome, he actually tried out the current diagnostic method and felt the pain himself.